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Improving Separability of Structures with Similar Attributes
in 2D Transfer Function Design

Shouren Lan, Lisheng Wang,Yipeng Song, Yu-ping Wang, Liping Yao, Kun Sun, Bin Xia, Zongben Xu

Abstract—The 2D transfer function based on scalar value and gradient magnitude (SG-TF) is popularly used in volume rendering.
However, it is plagued by the boundary-overlapping problem: different structures with similar attributes have the same region in SG-TF
space, and their boundaries are usually connected. The SG-TF thus often fails in separating these structures (or their boundaries) and
has limited ability to classify different objects in real-world 3D images. To overcome such a difficulty, we propose a novel method for
boundary separation by integrating spatial connectivity computation of the boundaries and set operations on boundary voxels into the
SG-TF. Specifically, spatial positions of boundaries and their regions in the SG-TF space are computed, from which boundaries can be
well separated and volume rendered in different colors. In the method, the boundaries are divided into three classes and different
boundary-separation techniques are applied to them, respectively. The complex task of separating various boundaries in 3D images is
then simplified by breaking it into several small separation problems. The method shows good object classification ability in real-world
3D images while avoiding the complexity of high-dimensional transfer functions. Its effectiveness and validation is demonstrated by
many experimental results to visualize boundaries of different structures in complex real-world 3D images.

Index Terms—Transfer function, volume rendering, connectivity computation, set operations, boundaries, classification ability.

F

1 INTRODUCTION

VOLUME rendering is an important technique for visual-
izing structures in a 3D image, by which structures and

their sizes, shapes and spatial relationships can be observed.
In order to visualize structures in a 3D image, an appropriate
transfer function must be designed [1], which assigns different
voxels with different optical properties (e.g., opacity, color). The
opacity setting determines which structure is visible, and the
color setting is used to distinguish different structures.

Transfer function design has been widely studied by many
researchers, see [1]- [20] and references therein. But it remains
a challenging problem to design an appropriate transfer func-
tion for a real-world 3D image containing multiple different
structures. Generally, different structures should be visualized
by different colors. This means that an appropriate transfer
function should be able to well separate different structures of
interest. However, some structures may have similar attributes,
and some of them are even closely adjacent spatially and thus
mistakenly connected. This makes it complicated to separate
different structures in a real-world 3D image.

In traditional transfer functions, users try to separate dif-
ferent structures by selecting different regions from a given
transfer function space [2]- [8]. Here, each transfer function
space is formed by a variety of attributes. Possible attributes
include scalar value, gradient magnitude [2] [14], second order
derivative [2] [13], texture [16], visibility [17], curvature [23],
occlusion [26], size [7], etc. According to the number of dimen-
sions, transfer functions may be divided into two classes: low-
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dimensional transfer functions (LD-TF) and high-dimensional
transfer functions (HD-TF).

Fig. 1. (a) four different structures with the same attributes. (b)-(c) the
corresponding regions of boundaries of the four structures in the SG-TF
space and LH-TF space.

LD-TFs attempt to separate different structures by fewer
attributes [2]- [7] [14]- [17] [20]- [26]. Typical examples are the
2D transfer function (2D-TF) based on scalar value and gradient
magnitude (abbreviated to SG-TF) [3] and the one based on the
L-H histogram (abbreviated to LH-TF) [5]. Both SG-TF and LH-
TF are used to visualize boundaries (i.e., surfaces having certain
thickness, formed by many boundary voxels [2]) of structures
by selecting certain regions from transfer function spaces. LD-
TFs usually can provide user-friendly interfaces to observe and
intuitively select or adjust regions in LD-TF spaces [3] [5] [25].
Therefore, they have been widely applied in volume rendering.
However, LD-TFs face a common region-overlapping problem:
different structures with similar attributes will have an over-
lapping region in a LD-TF space. This is illustrated in Fig. 1.
Fig. 1a shows four different structures with the same attributes.
Figs. 1b and 1c show that, either in the SG-TF space or the
LH-TF space, boundaries of the four structures correspond to
the same region. Hence, no matter which region is selected
from the SG-TF space or LH-TF space, boundaries of the four
structures cannot be correctly separated. As a result, LD-TFs
have the limited ability of object classification when visualizing
real-world 3D images with multiple structures.

In the SG-TF space, the similar boundary overlapping prob-
lem also exists: boundaries of different structures with similar
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Fig. 2. Examples about boundary overlapping phenomena in 7 real-world 3D images (the CT knee joints, the MRI brain ventricle, the MRI orange,
the CT engine, the MRA vessel, the CT foot and the CT abdomen and pelvis). When a certain region is selected from the SG-TF space, either
boundaries of multiple structures with similar attributes (see (a)(d)(f)(g)), or boundaries together with small fragments and uninteresting surface
patches (see (b)(c)(e)) are visualized simultaneously.

attributes will have an overlapping region. Furthermore, due to
the partial volume effects (PVE) [27], boundaries of two closely
adjacent structures (e.g., there is a very thin region between
them, see Fig. 7a) with similar attributes are usually regarded
as a connected boundary by the SG-TF, and are difficult to
separate. This makes the boundary overlapping problem more
challenging in the SG-TF space, and thereby reducing the
object classification ability. In Fig. 2, the boundary overlapping
problem is illustrated via several real-world 3D images. Fig.
2 shows that when a certain region is selected from the SG-
TF space, either boundaries of several structures with similar
attributes (Figs. 2a, 2d, 2f, 2g) or boundaries together with some
small fragments and uninteresting surface patches (Figs. 2b, 2c,
2e) are visualized simultaneously. Here, uninteresting surface
patches refer to the surface patches that are not of interest to the
user. Small fragments and uninteresting surface patches usually
interrupt the visualization of boundaries of interest, but they
cannot be separated from boundaries by the SG-TF because of
the boundary overlapping problem.

By utilizing more attributes, HD-TFs usually have better
structure-separation ability than LD-TFs [8], and useful inter-
faces in HD-TFs are studied in [8]- [9] [36]- [37]. However, HD-
TFs have several limitations. First, users usually are unclear
about which and how many attributes to use for an appropriate
HD-TF. Second, the classification in HD-TFs is usually a black-
box operation and users cannot manipulate when necessary
[8]- [9]. Third, the computational time in some HD-TFs can be

very long, as shown in [8]. Finally, HD-TFs have limitations in
separating connected boundaries of two closely adjacent struc-
tures with similar attributes. Therefore, HD-TFs have limited
applications to visualizing complex real-world 3D images.

Currently, the SG-TF is the most widely used transfer func-
tion. Therefore, we intend to improve its ability for object classi-
fication, and at the same time, avoids the complexity of HD-TFs.
For the purpose, a novel framework is proposed to solve the
boundary overlapping problem in the SG-TF. In the framework,
the spatial connectivity computation of boundaries along with
set operations on boundary voxels are integrated into the SG-
TF. With the framework, when boundaries of structures with
similar attributes are roughly determined by selecting a certain
region from the SG-TF space, we can separate different bound-
aries and exclude small fragments and uninteresting surface
patches. Thus, spatial positions of different boundaries, which
are of great importance in distinguishing different boundaries,
can be determined. Using such information, different bound-
aries are separated and assigned different colors in the transfer
function.

In the proposed framework, boundaries in 3D images are
divided into three different classes and different boundary
separation techniques are applied to them, respectively. This
way the complex task of separating different boundaries in 3D
images is simplified by dividing it into several small problems
easy to solve. Furthermore, based on the framework, a hierar-
chical processing strategy is applied to explore and visualize
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various boundaries in a complex 3D image. All boundaries
are first grouped into several groups based on whether they
have similar attributes (i.e., the overlapping region in the SG-
TF space). Subsequently, all groups are processed in the order,
and different boundaries in each group are separated by the
proposed framework. This strategy can be used to visualize
boundaries of different structures in many complex 3D images.
To some extent, it can be regarded as a compromise between the
SG-TF and HD-TFs. While it can have advantages of the SG-TF
and overcome the boundary overlapping problem in the SG-TF,
it can also avoid the complexity of HD-TFs. Its effectiveness has
been demonstrated by experimental results from many complex
real-world 3D images.

The rest of the paper is organized as follows. Section 2 re-
views relevant works. Section 3 describes a framework for solv-
ing the boundary overlapping problem in the SG-TF. Section 4
presents a hierarchical strategy to separate various boundaries
in complex 3D images. Section 5 shows experimental results in
many 3D images. Section 6 discusses some properties of our
method and Section 7 concludes the paper.

2 RELATED WORKS

The popular LD-TFs mainly include 1D transfer functions (1D-
TFs) and 2D-TFs. They are based on a special attribute or two,
respectively. 1D-TFs mainly use scalar values to classify 3D
images. Automatic detection of salient isosurface was discussed
in [20]- [21] and [28] by the contour spectra or other features.
The contour tree in [12] can separate individual structures
as ones in Fig.1 if only a single scalar is used for classifica-
tion. However, 1D-TFs have limitations and multi-dimensional
transfer functions are suggested [1]- [3].

In addition to the SG-TF and LH-TF, many other 2D-TFs
have been studied. For example, mean value and standard
deviation in the local region of each voxel were used to form
a new 2D attribute space [22]. The 2D-TF space formed by the
ambient occlusion was used to separate structures of similar
scalar values [26]. The size-based transfer function was used to
explore complex 3D images by the size [7] [24]. Lundstrom et
al. proposed to form a 2D-TF by the local histogram. Different
2D-TFs have their own advantages and are effective on some
data sets. Particularly, 1D-TFs and 2D-TFs have a useful merit:
they can provide interactive interfaces for users to do intuitive
operations, such as the region selection and region adjustment
in LD-TF spaces. A graphical user interface of a 2D-TF was used
in [25], and the point probe was introduced in [3] for separating
from structures around. However, 1D-TFs and 2D-TFs usually
suffer the region-overlapping problem in LD-TF spaces, and
have limitations in classifying objects [8]. The LH-TF can avoid
certain ambiguity existed in the SG-TF space [5], but it cannot
process the boundary overlapping problem as shown in Fig. 1.

Automatic segmentation of the SG-TF space and the LH-TF
space was discussed in [4] [29]- [32] [43]- [44]. Its purpose is
to break a 2D-TF space into different un-overlapping regions
so that each structure can correspond to a region. However, a
segmented region may correspond to multiple different bound-
aries, and a boundary might be broken into several surface
patches because too many regions are segmented from a LD-
TF space [4] [31]- [32]. The segmentation of a LD-TF space may
be improved by incorporating the spatial information of voxel
positions into the LD-TF space [4] [31]- [33]. The number of
segmented regions may be reduced by merging spatially adja-
cent regions [31]- [32]. However, the parameters for generating
a good segmentation result are not easy to determine. Addi-
tionally, connected boundaries of two adjacent structures with

similar attributes cannot be separated by clustering attributes
in a LD-TF space, or by clustering spatial positions of voxels.

Some researchers tried to overcome the limitations of LD-
TFs by combining or fusing different LD-TFs [10]- [11]. In
such techniques, different LD-TFs were combined to separate a
structure that otherwise cannot be done by each LD-TF [11], or
a new transfer function was generated by fusing two different
LD-TFs that correspond to two different structures respectively
[10]. These techniques may improve previous LD-TFs by using
more attributes. However, in the new transfer function space,
the spatial information is not used, and the region overlapping
problem still exists.

LD-TFs usually fail in many 3D images, because they utilize
fewer attributes for object classification. Thus, HD-TFs were
studied [8]- [9] [36]- [39]. The modified dendrogram was intro-
duced in [8] as a useful 2D user interface. By the interface, users
can design a HD-TF in an intuitive and informative manner.
However, it takes long computational time for this method
to classify large 3D images. An intelligent system was used
for high-dimensional classification of 3D images [9], where a
2D interface was provided to interactively paint the region of
interest from many 2D slices [36]- [37]. Then, machine learning
was used for classifying the object of interest from the 3D
image. In such intelligent systems, different training data are
needed when the object of interest is different. HD-TFs usually
have better object classification ability than that of LD-TFs, but
they have several limitations mentioned in Section 1..

3 A FRAMEWORK FOR SOLVING THE BOUNDARY OVER-
LAPPING PROBLEM IN THE SG-TF
In this section, we first describe the boundary overlapping
problem in the SG-TF space, and then propose a framework
to solve the problem.

3.1 The boundary overlapping problem in the SG-TF
When a region U is selected from the SG-TF space of a 3D image
f(x, y, z) for a structure G, a set of voxels (denoted by ΦU )
is determined from f(x, y, z). ΦU contains not only boundary
voxels of G, but also boundary voxels of the structures with
similar attributes as G. Additionally, many small fragments and
uninteresting surface patches are contained in ΦU as well, as
shown in Fig. 2. However, users do not know how the voxels in
ΦU are classified into each boundary, each fragment and each
uninteresting patch. In such case, the boundary overlapping
problem can be described as follows:

(P) Separate or extract different boundaries (or their bound-
ary voxels) from ΦU , and exclude small fragments and uninter-
esting surface patches from ΦU .

In ΦU , suppose that boundaries of several structures with
similar attributes are represented by Si, i = 1, 2, ...,m, re-
spectively. Fig. 2 illustrates that Si (or their corresponding
structures) may have very complex spatial relationships. For
example, two structures with similar attributes might be far
from each other, or closely adjacent or touched. Particularly, be-
cause of the PVE, boundaries of two closely adjacent structures
are often mistakenly regarded as a connected boundary. This
makes the problem (P) become more complicated. Instead of
processing all boundaries in ΦU by the same technique, in this
paper we will divide boundaries in ΦU into different classes,
and target with different processing techniques, respectively.
Such processing mode can help to simplify the problem (P).

According to different spatial relationships, the structures
with similar attributes in the 3D image are divided into the
following three classes:



1077-2626 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2537341, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. Typical examples of boundaries of structures in Ω1or Ω2 or Ω3.
(a) boundaries of three far away structures in Ω1. (b) boundaries of two
closely adjacent structures in Ω2, being connected due to the PVE. (c)
boundaries of two touched structures in Ω3.

(i) A structure belongs to Ω1 if its boundary does not connect
spatially with boundaries of any other structure with similar
attributes. See three such structures shown in Figs. 3a and 2b.

(ii) A structure belongs to Ω2 if it is closely adjacent to
(but not touched with) certain structures with similar attributes,
and its boundary is (mistakenly) connected with boundaries of
these structures due to the PVE. Two bone structures of the CT
knee joint shown in Figs. 3b and 2a belong to Ω2.

(iii) A structure belongs to Ω3 if it is spatially touched
with some structures with similar attributes. Its boundary is
connected with boundaries of these structures. See two such
structures in Fig. 3c.

Correspondingly, boundaries in ΦU can also be classified
into the same three classes, namely belonging to Ω1 or Ω2 or
Ω3. Most human organs in 3D medical images should be far
from each other or closely adjacent. Some parts of 3D industrial
CT images may be spatially touched, as illustrated in Fig. 3c.
Because of the limitation of the imaging resolution, however,
sometimes two structures which should be closely adjacent in
3D space are possibly touched in the sampled 3D image.

Based on the classification above, the boundary overlapping
problem in ΦU can be roughly formulated into the following
small problems: how different boundaries in Ω1 or Ω2 or Ω3 are
separated from each other? In real-world 3D images, structures
belonging to Ω1 and Ω2 are usually seen. Thus, we will focus
on the techniques for separating boundaries of structures in
Ω1 and Ω2. The effective algorithms for the Ω3 case are data
dependant, we will present a general idea.

3.2 The framework for solving the boundary overlapping
problem in ΦU

In this section, a framework is proposed to solve the problem
(P). It integrates those techniques that are used to separate
boundaries of different structures in Ω1 or Ω2 or Ω3 and
to exclude small fragments and uninteresting surface patches
from ΦU . It mainly includes the following steps:

(i) Extract all connected sets from ΦU by the spatial con-
nectivity. Small fragments are excluded from ΦU as small
connected sets.

(ii) Classify visually the remained large connected sets in ΦU

into four types: boundaries of structures in Ω1 or Ω2 or Ω3 and
uninteresting surface patches. By the user’s observation, unin-
teresting surface patches are excluded from ΦU and boundary
of each structure in Ω1 is separated from ΦU .

(iii) Separate boundary of each structure in Ω2 or Ω3 or Ω2∪
Ω3 (e.g., the combination of structures in Ω2 and Ω3) by the
particularly developed techniques.

Determine U by selecting the region U from

the SG-TF space

Extract all spatially connected sets of voxels from U

by spatial connectivity computation

Each boundary is 

separated from U

as a large 

connected set.

Boundaries are 

separated by the 

technique in 

Section 3.2.3

Different boundaries in U are separated      

and labeled

Boundaries are 

separated by 

combining a new 

LD-TF

Uninteresting 

surface patches32

Excluded from  

U

Exclude small fragments from U , and visually 

classify large connected sets in U

Fig. 4. The flowchart of the framework for solving the boundary overlap-
ping problem in the SG-TF space.

Finally, all boundaries are extracted from ΦU , separately.
The flowchart of the framework is shown in Fig. 4. Below, we
will introduce each step in detail.

3.2.1 Computation of spatial connectivity of boundaries in ΦU

Each boundary in 3D images is a spatially connected surface
[46]. When a suitable U is selected from the SG-TF space,
each boundary formed by lots of boundary voxels in ΦU will
keep the connectivity as well. Thus, boundaries of different
structures in Ω1 are different connected sets in ΦU . Bound-
aries of several closely adjacent structures in Ω2 are usually
classified incorrectly as a connected set. The boundaries of
several touched structures in Ω3 will also be a connected set.
In addition, even small fragments and uninteresting surface
patches are also different connected sets in ΦU . These different
connected sets may be extracted from ΦU by the following
tracing algorithm:

Step 1 Mark all voxels in ΦU as not-visited ones.
Step 2 Perform the following operations (Step 2.1-Step 2.2)

circularly until all voxels in ΦU are marked as the voxels visited.
Step 2.1 Select a not-visited voxel from ΦU as a seed, mark

it as a visited voxel and push it into a stack denoted by H .
Step 2.2 Perform the following operation (Steps 2.2.1-

2.2.2) circularly until H is empty:
Step 2.2.1 Pop up a voxel from H .
Step 2.2.2 Consider all voxels in the 18-neighborhood

of the voxel, respectively. If a voxel is not in ΦU or is visited
before, then skip it. If a voxel is in ΦU and not visited before,
then push it into H , and mark it as the visited voxel.

Finally, all connected sets in ΦU are extracted. These con-
nected sets are ranked by the voxel number in each connected
set and numbered. Usually, small fragments corresponds to
small connected sets (containing less voxels). Thus, they can be
easily recognized and excluded from ΦU by the property. This is
illustrated in Fig. 5, where ΦU with or without small fragments
are visualized. Remaining large connected sets (containing
more voxels) correspond to boundaries of different structures
in Ω1, or boundaries of closely adjacent structures in Ω2, or
boundaries of touched structures in Ω3, or uninteresting surface
patches. They will be further classified.
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Fig. 5. Visualization of ΦU with and without small fragments.

3.2.2 Visual classification of large connected sets in ΦU

A visualization-based technique is used to classify visually
large connected sets in ΦU . With the technique, all large
connected sets in ΦU can be visualized simultaneously with
different colors, as in Fig.6a. Alternatively, each large connected
set can also be individually visualized, as in Fig. 6b. By ob-
serving these visualization results, users can easily distinguish
and classify large connected sets in ΦU into the four classes:
boundaries of structures in Ω1, or boundaries of closely adjacent
structures in Ω2, or boundaries of touched structures in Ω3,
or uninteresting surface patches. For example, in Fig. 6b, 6
large connected sets in ΦU can be visually classified into three
boundaries in Ω1 and three uninteresting surface patches. In
Fig. 6a, four large connected sets can be visually divided into
two boundaries in Ω1 and two groups of boundaries in Ω2.

While large connected sets corresponding to uninteresting
surface patches are excluded from ΦU , large connected sets
corresponding to boundaries of structures in Ω1 are marked and
separated from ΦU . The remaining large connected sets, which
correspond to boundaries of several connected structures in Ω2

or Ω3 or Ω2∪ Ω3, will be further processed. We only need to
study the problem (P) in the former two cases, and the Ω2∪ Ω3

case can actually be decomposed into the former two cases.

Fig. 6. Visualization of large connected sets in ΦU . (a) four large
connected sets in the CT knee joint are visualized simultaneously with
different colors. (b) 6 large connected sets in the MRI brain ventricle are
visualized, individually.

3.2.3 Separation of different boundaries in Ω2

This section discusses how different boundaries in a large
connected set Φ ∈ Ω2 are separated from Φ. Without loss of
generality, we assume that Φ contains only two boundaries
S1, S2 of two closely adjacent structures (denoted by D1, D2).

Let D denote the thin region in between D1 and D2, as in
Fig. 7a. Because of the PVE, scalar values of the voxels in D
are actually generated by mixing the scalar values of multiple
voxels (some voxels in D and some in D1 and/or D2) [27].
Consequently, the region D usually has scalar values that are

smaller than those of two adjacent ends of D1 and D2, and
overlaps partially with scalar values of D1 and/or D2, as in
Fig. 7b. When the region U is selected from the SG-TF space,
many voxels of D (denote by Λ) are classified incorrectly as
boundary voxels in ΦU , and thus boundaries S1 and S2 are
incorrectly connected by these voxels, as in Fig. 7c. We have
Φ = S1 ∪ S2 ∪ Λ. This fact suggests that we can disconnect S1

and S2 by removing Λ from Φ. Motivated by this, a technique
is proposed to separate S1 and S2 from Φ, which is described
as follows:

Fig. 7. Illustrations on how boundaries of two closely adjacent structures
in Ω2 are separated. (a) the thin region D in between two closely adja-
cent structures D1 and D2. (b) due to the PVE, D will have scalar values
less than ones of two adjacent ends of D1 and D2. (c) boundaries
Φ = S1 ∪ S2 ∪ Λ and S1 and S2 (boundaries of D1 and D2) are
connected by Λ (boundary voxels in D). (d) S1 and S2 are eroded as
two incomplete boundaries S̃1, S̃2 when Λ is eroded from Φ. (e) the
dilated set S2 of S̃2, S2=the dark region + S̃2. (f) the set Φ− S2, where
S1 is isolated as a connected set.

Fig. 8. An example about the separation of boundaries of two adjacent
structures in Ω2. (a) connected boundaries of two adjacent bone struc-
tures in Fig. 3b. S1 and S2 are marked by interactively drawing two small
seed regions on them. (b) S1 and S2 are disconnected and eroded as
S̃1 and S̃2 by the erosion algorithm. (c) S2, the dilated set of S̃2 in the 3D
image. (d) different connected sets in Φ− S2. (e) separated boundaries
of two bone structures.

First, an special erosion operation is used to erode Λ from
Φ. Generally, Λ cannot be eroded from Φ by the conventional
spatial erosion operation. So, we will introduce a new erosion
operation. Assume that VΦ is the region selected in the SG-TF
space for Φ (in this paper we assume VΦ = U ). Denote the
scalar range of VΦ by [Va, Vb]. If we gradually shrink VΦ from
left (or right) by gradually increasing Va (or decreasing Vb),
then some voxels will be gradually removed from Φ. We call
such shrinking-operation of VΦ as the erosion operation of Φ. Λ
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can be eroded from Φ by using such an erosion operation. The
erosion operation can be detailed as follows:

Step 1 Mark S1, S2 in Φ by interactively drawing two small
seed regions on S1, S2 (as in Fig. 8a), respectively. Let n = 1,
Φ0 = Φ.

Step 2 Perform the following operations (step2.1 - step2.3)
circularly until two seed regions belong to two different con-
nected sets:

Step 2.1 Φn = Φn−1 − {(x, y, z) : f(x, y, z) = Va + n}. Let
n++.

Step 2.2 Compute connected sets from Φn.
Step 2.3 Judge whether two seed regions are in the same

connected set in Φn.
After marking S1, S2, Λ will be automatically eroded from

Φ, and S1 and S2 are disconnected but they are eroded as two
incomplete boundaries (denoted by S̃1, S̃2, respectively), as in
Figs. 7d and 8b. S̃1 and S̃2 are two connected sets in Φn and
each one contains a seed region.

Secondly, S1 and S2 are separated automatically from Φ.
This is implemented by performing automatically the following
operations:

Step 1 Dilate spatially S̃2 in the 3D image with a given
radius r (r = 3 in this paper) so that Λ is included in the dilated
S̃2. Denote the dilated S̃2 by S2.

Step 2 Subtract S2 from the original Φ (namely, Φ− S2).
Step 3 Extract the largest connected set from Φ− S2, which

is S1.
Step 4 Separate S2 from Φ by the same steps 1-3 as above

based on S̃1, or alternatively, by extracting the largest connected
set from Φ − Ŝ1, where Ŝ1 is a spatially dilated set of S1 in the
3D image.

Fig. 9. An example about the separation of two touched structures in
Ω3. (a) a panel is directly touched with a ring, see Fig. 3c. (b) a new
LD-TF: the histogram of z-coordinates of all boundary voxels of the two
structures. (c)-(d) The ring is separated from the panel by selecting two
regions in the LD-TF, as shown in (b).

In Step 1, if r = 1, then the voxels that are in 26-
neighborhood of voxels in S̃2 will all be marked as belonging to
S2. By performing such spatial dilation operation several times,
S̃2 may be dilated with a radius r > 1. S2 includes most voxels
of Λ and an expanded S̃2, as illustrated in Figs. 7e and 8c. The
set Φ−S2 includes all boundary voxels of S1, partial boundary
voxels of S2 (e.g., S2 − S2) and some other small fragments,
see Figs. 7f and 8d. In Φ − S2, S1 is isolated as a connected
set. Therefore, S1 can be automatically separated from Φ by
computing the largest connected set from Φ− S2.

Fig. 8 illustrates the procedure to separate boundaries of two
closely adjacent structures by the proposed technique.
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Attribute distributions of 

Seven different boundaries

in the SG-TF space
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3
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Fig. 10. An example to illustrate the proposed framework, in which 7
different boundaries (a-g) are separated from ΦU and 6 main operations
(1-6) are done in the separation. 1: roughly determining ΩU by select-
ing a region in the SG-TF space and visualize ΩU ; 2: exclude small
fragments and visualize four large connected sets in ΩU with different
colors. 3: visually classify four large connected sets: two in Ω1, one in
Ω2 and one in Ω2∪ Ω3. 4: separate boundaries of two structures in Ω2.
5: separate boundaries of three structures into two connected subsets
by the technique in Section 3.2.3. One subset is in Ω3. 6: separate
boundaries of two touched structures (∈ Ω3) by combining a new LD-TF,
as in Fig. 9. Attribute distributions of 7 different boundaries (a-g) in the
SG-TF space are also shown respectively.

3.2.4 Separation of different boundaries in Ω3

This section discusses how different boundaries in a large
connected set Φ ∈ Ω3 are separated from Φ. To simplify the
discussion, we assume that Φ contains only boundaries of two
touched structures in Ω3, namely, S1, S2 ⊂ Φ.

Generally, S1 and S2 cannot be disconnected by the erosion
operation. It is necessary to seek other attributes (such as shape,
curvature, topological attributes [45], spatial distribution of X
or Y or Z coordinate, etc.) to separate S1 and S2. This means
that S1 and S2 will be disconnected by combining a new LD-
TF [11]. When a new and suitable LD-TF is determined, the
attribute distribution of S1 and S2 in the new LD-TF space can
be displayed. Based on the observation, users may disconnect
S1 and S2 by interactively selecting two different regions in the
new LD-TF space.

Fig. 9 shows an example to illustrate how boundaries of two
touched structures are separated by the proposed technique. In



1077-2626 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2537341, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 9b, the histogram of z-coordinates of all boundary voxels
of two touched structures is shown. By selecting two different
regions from the histogram, the two touched structures are
separated, as shown in Figs. 9c and 9d. We observe that, many
structures belonging to Ω3 are contained in 3D industrial CT
images, and these structures are usually artificial and have
regular shapes. In many cases, boundaries of such touched
structures can be separated by a special plane. Therefore, the
idea in Fig. 9 can be applied to such case of Ω3. However, in
most cases, to select a suitable new LD-TF is application or
data-dependent.

3.3 An example to illustrate the framework
In Fig. 10, an example is provided to illustrate the framework
in Section 3.2. First, boundaries of 7 different structures with
similar attributes are determined by selecting a region from
the SG-TF space of the CT engine. After the computation of
spatial connectivity, small fragments are excluded from ΦU , and
four different large connected sets (containing 7 boundaries)
are visualized in different colors and visually classified (two
in Ω1, one in Ω2 and one in Ω2 ∪ Ω3). The large connected set
in Ω2 are disconnected into two different boundaries using the
techniques in Section 3.2.3. The large connected set in Ω2∪Ω3 is
first disconnected into two different connected subsets (one in
Ω3) by the techniques in Section 3.2.3, and then the connected
subset in Ω3 is further disconnected into two different bound-
aries by combining a new LD-TF as in Fig. 9. Fig. 10 shows how
different boundaries are separated from ΦU .

Fig. 11. An example for illustrating two skills in Section 4.1. (a) the
original SG-TF space of the CT abdomen and pelvis. (b) the simplified
SG-TF space after skin surface, lung boundaries, bone surfaces, large
blood vessels all are separated from ΦU and their boundary voxels are
fixed. (c)-(d) different boundary voxels determined by selecting the same
region from the two different SG-TF spaces in (a)-(b).

4 A HIERARCHICAL PROCESSING STRATEGY FOR SEP-
ARATING VARIOUS BOUNDARIES IN COMPLEX 3D IMAGES

A complex 3D image usually contains multiple structures,
which can be categorized into several different groups based on
their similar attributes. With this fact, in this section we propose
a hierarchical processing strategy to explore and visualize dif-
ferent structures in complex 3D images. Below, we first discuss

Fig. 12. Examples for illustrating the usefulness of the semi-transparent
visualization in the repaired boundaries. (a) three boundaries be-
fore repaired. (b)-(c) visualization of repaired boundaries when semi-
transparent opacity values are not set (see (b)) or set (see (c)) to
expanded voxels.

Input a 3D image

Interactively select a certain region U

from the SG-TF space

Separate different boundaries from U

by the framework proposed in Section 3.2    

Simplify the SG-TF space and fix boundary 

voxels of newly separated boundaries

Continue to select U ?

Repair some boundaries when necessary

Design the transfer function based on the 

spatial position of each boundary

No

Yes

Fig. 13. The flowchart of the hierarchical processing strategy for sepa-
rating various boundaries from a complex 3D image

three related problems. Then we will introduce the hierarchical
processing strategy in detail.

4.1 Two useful skills for improving boundary-separation in
different groups

In real-world 3D images, the SG-TF space usually has a much
complex distribution and is not easy to understand. In fact,
the SG-TF space can be regarded as the superposition of at-
tribute distributions of different boundaries, small fragments
and uninteresting surface patches. By the property, whenever a
boundary is separated, its attribute distribution will no longer
be counted in the SG-TF space. In this way, the distribution
of the SG-TF space can be simplified and become easier to
understand. So, users can more easily select, adjust and refine
the regions for the structures remaining to be separated. In Fig.
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Fig. 14. The hierarchical processing procedure for separating 10 different boundaries (a-j) from the CT abdomen and pelvis. All boundaries are
grouped into three groups by the operations 1,4 and 11, and 13 operations (1 - 13) are done. Different groups are processed in order, and boundaries
in each group are separated by the proposed framework (see 1-2, 4-9 and 11-12, respectively). 3, 6, 10: simplify the SG-TF space after certain
boundaries are separated, and fix boundary voxels of separated boundaries. 1, 4, 7 and 11: roughly determining boundary voxels ΦU by selecting
certain regions from SG-TF spaces; 2, 8, 12: exclude small fragments and visually classify different large connected sets. Uninteresting surface
patches are excluded and boundaries in Ω1 are separated; 5 and 9: disconnecting boundaries of structures in Ω2; 13: the boundaries i is further
repaired by the technique in Section 4.2. Attribute distributions of 10 different boundaries (a-j) in the SG-TF space are shown, respectively. They
are really shown as three different overlapping regions

14, the original SG-TF space is simplified twice after two groups
of boundaries are separated.

When a region U is selected from the SG-TF space for
boundaries in a group, ΦU might also include surface patches of
boundaries in other groups. This greatly affects the separation
of boundaries in different groups. To overcome such a limi-
tation, when some boundaries are separated, their boundary
voxels are marked in the 3D image and are fixed. Here, ”fixed”
means that these voxels will not be included in ΦU when a new
region U is selected from the SG-TF space, even if these voxels
belong to ΦU . This way we can reduce the complexity of ΦU

of a new group, and possibly disconnect boundaries that are
connected by the fixed voxels.

An example is shown in Fig. 11 for illustrating two skills
above. Fig. 11a shows the original SG-TF space of the CT
abdomen and pelvis. After having separated skin surface, lung
boundaries, bone surfaces, large blood vessels, their boundary
voxels are fixed and a simplified SG-TF space is generated in
Fig. 11b. When selecting the same region from the two SG-
TF spaces, two sets of greatly different boundary voxels are
determined, as in Figs. 11c and 11d. Boundaries in Fig. 11d are
easy to separate visually.

4.2 Boundary repairing by the dilation operation
In volume rendering, a boundary is a thick surface without
holes. Due to the compact selection of U or other reasons, how-
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(a) (c)

(e) (f) (g)(d)

(b)

Fig. 15. Visualization of boundaries contained in the same 7 3D images as ones in Fig. 2. Different boundaries in each 3D image are separated by
the proposed method and visualized with different colors. Other surface patches, fragments and skin surfaces are set very low opacity values. (a) 6
boundaries in the CT knee joints; (b) three boundaries in the MRI brain ventricle; (c) two boundaries in the MRI orange; (d) 7 boundaries in the CT
engine; (e) a boundary in the MRA vessel; (f) 47 boundaries in the CT foot; (g) 10 boundaries in the CT abdomen and pelvis.

ever, a boundary with small holes or without outer boundary
voxels might be included in ΦU , as shown in Fig. 12a. In this
case, it is necessary to repair the boundary. Since the holes are
very small and the lost outer boundary is usually thin, we will
repair a boundary by spatially dilating it in the 3D image with
a small radius. By the dilation, lost boundary voxels may be
recovered.

After the dilation operation, other voxels that are not in
boundary might also be marked incorrectly as boundary voxels.
If they are assigned the same opacity values as true boundary
voxels, the visualization results of the repaired boundaries
might be greatly distorted, as shown in Fig. 12b. These voxels
usually have very small gradient values and comparatively
large distances to the original boundaries. So, we adjust opac-
ity values of these voxels by their gradient magnitudes and
distances. This can greatly improve the visualization results of
restored boundaries, as illustrated in Fig. 12c.

4.3 Region selection in the SG-TF space
In the SG-TF space, the exact region corresponding to a bound-
ary is generally unknown. Users usually roughly determine
boundary of interest by interactively selecting a region from
the SG-TF space [3] [5]. However, the visualization is usually
disturbed by small fragments and other surface patches, as
shown in Fig. 2. In this paper, the region U is acceptable as
long as it satisfies the following two conditions:

(i) ΦU includes at least most boundary voxels of boundaries
of interest.

(ii) Boundaries of interest in ΦU can be cut apart from other
boundaries, or do not link to other boundaries.

When such a U is selected, ΦU might include small frag-
ments and uninteresting surface patches, and the contained
boundary might have small holes. However, the method in this
paper can well handle them. This relaxes the selection condition
of the region U .

4.4 Hierarchical processing strategy

The flowchart of the hierarchical processing strategy is de-
scribed in Fig. 13. By the strategy, all boundaries in a 3D image
are first grouped into several groups by selecting different
regions from the SG-TF space. Next, different groups are pro-
cessed in the order, and boundaries in each group are separated
by the framework in Section 3.2. Finally, several groups of
boundaries with different attributes are separated.

Each separated boundary has two kinds of information: the
spatial position in the 3D image and the corresponding region
in the SG-TF space. The transfer function can be designed based
on such information, and different boundaries are assigned
with different colors, respectively. By assigning low opacity
values to some boundaries, the occlusion problem of these
boundaries can be avoided [40].

In Fig. 14, the hierarchical processing strategy is illustrated
by an example from the CT abdomen and pelvis. All boundaries
in the 3D image are grouped into three groups, and 10 different
boundaries are separated from the three groups. Fig. 14 demon-
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strates how different boundaries are hierarchically separated in
complex 3D images.

Fig. 16. Visualization of anatomical boundaries separated from four
different complex 3D CT medical images by the proposed method.

Fig. 17. 16 different boundaries in Figs. 16a and 16d are visualized,
individually.

5 EXPERIMENTAL RESULTS

The proposed method has been applied to different 3D images
from real-world. For the comparison with visualization results
in Fig. 2, experimental results from the same 7 3D images as
in Fig. 2 are provided in Fig. 15. The 7 images include the
CT knee joints, MRI brain ventricle, MRI orange, CT engine,
MRA vessel, CT foot, CT abdomen and pelvis. In Fig. 2, due to
the boundary-overlapping problem in the SG-TF space, either
boundaries of multiple structures or boundaries along with
many small fragments and uninteresting surface patches are
volume rendered in one color. By the proposed method in
this paper, not only small fragments and uninteresting surface
patches can be excluded from boundaries of interest (see Figs.
15b, 15c, 15e), but also different boundaries of interest can be
separated and visualized with different colors (see Figs. 15a,
15d, 15f, 15g). Figs. 2 and 15 demonstrate that the proposed
method has a very good ability in object classification compar-
ing with the SG-TF.

In Figs. 10 and 14, attribute distributions of 7 and 10 differ-
ent boundaries in the SG-TF space are displayed, respectively.
It can be seen that they are really overlapped in the SG-TF
space. Particularly, in the CT abdomen and pelvis, CT engine,
CT knee joints and CT foot, boundaries of many structures
with similar attributes are connected, as shown in Figs. 2g, 2d,
2a, 2f. Aorta and spine in Fig. 2g belong to Ω2, and nearly
all bone structures in Fig. 2f belong to Ω2. Figs. 10 and 14

show several groups of structures belonging to Ω2 and/or
Ω3. Such boundary-overlapping problems are challenging for
separating different boundaries from these 3D images with
existing approaches. Our proposed method, however, can well
handle them, as shown in Figs. 15 and 16.

3D CT images of human abdomen, pelvis and chest con-
tain many anatomical structures with different attributes and
complex spatial relationships. Thus, boundary-overlapping is
prevalent in them. This makes it very complex to classify differ-
ent anatomical structures from them. The SG-TF usually cannot
well classify such CT images. With the proposed method, how-
ever, boundaries of many anatomical structures can be better
separated. This is illustrated in Figs. 15g, 16a, 16b, 16c, 16d,
where at least 7 different anatomical boundaries are separated
from each 3D image and visualized with different colors. Each
individual anatomical boundary can also be visualized, as in
Fig. 17. The CT abdomen and pelvis in Fig. 2g is from a patient
with a stent, which is located between two large blood vessels.
Figs. 14 and 15g show that the stent can be well separated
from vessels. Figs. 14, 15, 16, 17 demonstrate that the proposed
method has a strong ability to classify objects from complex 3D
images.

In Table 1, we provide the statistics on the size of each 3D
image in Figs. 15 and 16, the number and classification of sep-
arated boundaries from each 3D image, the experts’ evaluation
on the visualization result of each 3D image, the time used to
separate all boundaries from each 3D image. Here, the time is
counted from the selection of U to complete the visualization of
all separated boundaries. All experiments are run on a PC with
Intel Core i7-4470k@3.50GHz, 8GB RAM and Nvidia GeGorce
GTX 760. The scores of experts’ evaluation were from four
independent clinical experts, as shown in Section 6.2, which
further validated the practicability and acceptability of the
proposed approach.

The 3D images in Figs. 15 and 16 were freely downloaded
from http://lgdv.cs.fau.de/External/vollib/ (Figs. 15a, 15c,
15d), http://www.osirix-viewer.com/datasets/ (Figs. 15f, 16a,
16b, 16c, 16d) and www.volvis.org (Figs. 15b, 15e, 15g,). Thanks
for sharing data.

6 DISCUSSIONS

6.1 The ability for classifying different objects
The boundary overlapping problem often exists and it limits
the ability of the SG-TF for classifying different objects from
3D images. With the proposed framework in Section 3.2, how-
ever, different boundaries, small fragments and uninteresting
surface patches can now be well separated even if they have an
overlapping region in the SG-TF space. For example, different
boundaries that cannot be separated by the SG-TF previously
(see Fig. 2) can now be better separated (see Fig. 15).

Generally, it is a difficult task to classify all different bound-
aries from a complex 3D image [8], because they may have
complex spatial relationships and different attributes. Using
the hierarchical processing strategy proposed in this paper, we
separate different boundaries from each group. The strategy
is very effective in many complex real-world 3D images, as
demonstrated in Figs. 14, 15f, 15g, 16a, 16b, 16c, 16d. 47 bone
structures are separated from the CT foot (Fig. 15f), and 7 to 10
anatomical structures from 5 CT images of human abdomen,
pelvis and chest (Figs. 15g, 16a, 16b, 16c, 16d).

6.2 Clinical evaluations of classification results
Four clinical experts were asked to evaluate the visualization
results in Figs. 15, 16, 17, independently. They evaluated the



1077-2626 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2537341, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

3D images Image size B-number B-type Score TOH(s) TOC(s) TOS(s) TOI(s) Time(s)
in Fig 15g 512x512x174 10 Ω1,Ω2 4.84 2.98 5.27 13.93 183.82 206

CT Knee joint 379x229x305 6 Ω1,Ω2 5.8 0.78 1.04 25.46 12.72 40
MRI ventricle 256x256x124 3 Ω1 5.5 0.25 0.76 - 50.99 52

CT Engine 256x256x256 7 Ω1,Ω2,Ω3 - 0.47 0.22 30.47 41.85 73
MRA blood 256x320x128 1 Ω1 5.8 0.33 0.51 - 37.16 38
MRI Orange 256x256x64 2 Ω2 - 0.09 0.20 7.72 12.98 21

CT foot 512x512x250 47 Ω2 5.8 5.15 7.46 495.28 528.11 1036
in Fig 16a 512x512x593 9 Ω1,Ω2 5.07 10.94 40.42 109.17 476.47 637
in Fig 16b 512x512x288 9 Ω1,Ω2 5.3 6.99 30.59 13.51 375.91 427
in Fig 16c 512x512x394 8 Ω1,Ω2 5.32 5.76 20.65 25.19 233.40 285
in Fig 16d 512x512x347 7 Ω1,Ω2 5.17 4.24 14.24 60.78 222.74 302

TABLE 1
The statistics of the image size, the number and type of separated boundaries (B-number, B-type), the evaluation of the volume rendering result by

experts (Score: very poor-1; poor-2; fair-3; good-4; very good-5; perfect-6), the time used to separate all boundaries from each 3D image (TOH,
TOC, TOS, TOI: the times used for computing 2D histogram in the SG-TF space, for computing connected sets, for set operations, and for

interactive operations and others, respectively. Time: total time. Unit: second)

correctness and acceptability of each visualization result, and
gave respective scores. Here, the scores reflect the subjective
evaluation of these experts with ranks as follows: very poor-
1, poor-2, fair-3, good-4, very good-5, perfect-6. For the CT
knee joints, MRI brain ventricle, MRA vessel and CT foot, the
visualization results of all separated boundaries were evalu-
ated and given a score by every expert. However, CT images
of human abdomen, pelvis and chest contain many different
organs, such as spine (or bone structure), two lungs, heart,
two livers, large blood vessel, two kidneys, stomach, spleen,
etc. So, each organ was evaluated by every expert individually.
Let Sk,i,n represent the score given by the n-th expert to the
i-th organ separated from the k-th 3D image, k = 1, 2, ..., p,
i = 1, 2, ...,m, n = 1, 2, 3.4. Denote Ψk,i =

∑4

n=1
Sk,i,n,

Lk,i =
Ψk,i

4
, Γk =

∑m

i=1
Lk,i, Ξi =

∑p

k=1
Lk,i. Then Lk,i is

the score of the i-th organ in the k-th 3D image. The mean Γk
m

roughly indicates whether different organs in the k-th 3D image
are well classified, and Ξi

p
indicates whether the i-th organ is

well classified from different 3D images. The scores (i.e., Lk,i

) of different organs in 5 different 3D images (see Figs. 15g,
16a, 16b, 16c, 16d) are shown in Table 2, respectively. Γk

m
is

the average of each column, and Ξi
p

the average of each row.
Table 2 shows that the visualization results of two lungs, spine
(bone structure), aorta, two kidneys, spleen and heart from
different 3D CT images are highly recognized by the clinical
experts. Even liver, stomach and intestine were also given good
evaluations. This evaluation further validated the practicability
and acceptability of the proposed method.

We also display the distributions of boundary voxels of four
separated boundaries (Figs. 15g, 15a, 15c, 15d) on some 2D
sectional images, as in Fig. 18. Fig. 18 shows that the thick
boundaries separated by the proposed method are consistent
with those observed by human vision, indicating the effective-
ness of the method.

Fig. 18. Distributions of boundary voxels of four separated boundaries
(Figs. 15g, 15a, 15c, 15d) on some 2D sectional slices.

In Fig. 19, the orange flesh and blood vessel structure are
visualized by two different methods, respectively. In Figs. 19a

3D images 15g 16a 16b 16c 16d R-average
Left lung 5.5 5.5 5.5 5.5 5.8 5.56

Right lung 5.5 5.5 5.5 5.5 5.8 5.56
Spine 5 5.8 5.5 5.8 5.5 5.52
Heart 4.8 5.3 5.3 5.5 4.8 5.14

Left kidney 4.8 5.5 5.8 5.5 5 5.32
Right kidney 5 - 5.8 5.5 5 5.325

Aorta 5.5 5.5 5.8 5.8 5 5.52
Liver 3 4.3 4 4 4.3 3.92

Spleen 4.5 5 4.5 4.8 5.3 4.82
Stomach - 4 - - - 4
Intestine - 4.3 - - - 4.3

C-average 4.84 5.07 5.3 5.32 5.17 -
TABLE 2

Experts’ evaluation of boundary of each anatomical structure shown in
Figs. 15g, 16a, 16b, 16c, 16d. Grades and scores: very poor-1; poor-2;

fair-3; good-4; very good-5; perfect-6. C(R)-average: the average of
data in each column or row

and 19c, they are separated from 3D images and visualized by
the proposed method. In Figs. 19b and 19d, their boundary sur-
faces are reconstructed by the method in [46]. The visualization
results by two different methods have little difference.

6.3 Comparisons with some related works
A HD-TF with 10 attributes was applied in [8] to classify
the structures in the CT engine. While most structures were
correctly classified, two closely adjacent rings (∈ Ω2) were
incorrectly classified as one structure. In this paper, these two
rings are well separated, as shown in Fig. 15d. In [8], it takes
about 15 hours to classify structures in the CT engine, while
our method uses much less time, as shown in Table 1. The CT
engine was also volume rendered in [18] [32] [38] [41], but many
different structures were classified into one class.

The intelligent system in [9] can divide a CT knee joint into
three pieces of bones, but the visualized bone surfaces have
certain distortion, and are not as smooth as our processed ones
in Fig. 15a. In [9], the structure separation was done by painting
different pieces of bones into different classes in the training
data. Hence, in the cases where a 3D image contains more
structures (such as the CT foot in Fig. 15f) and/or the structures
with complex shapes, it is a time-consuming task to manually
generate train data.

The size-based transfer function may highlight large blood
vessels in MRA images [7], but small fragments and some
uninteresting surface patches cannot be excluded. In this paper,
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Fig. 19. Visualizations of the same structures by two different methods.
(a)(c) volume rendering of the boundaries separated from 3D images by
the proposed method. (b)(d) surface rendering of the boundary surfaces
reconstructed by the method in [46].

they are all separated from vessels of interest (refer to Fig. 15e).
In [15], the MRI cerebral ventricle was volume rendered, where
small fragments and uninteresting surface patches were gradu-
ally excluded by an iterative topological smoothing technique.
In this paper, such small fragments and uninteresting surface
patches can be simply excluded by the spatial connectivity.

Region-growing method was mainly used to segment a
structure with homogeneous attribute from 3D images [35]-
[36]. In many cases, it is a complex task to design an appropriate
rule to stop the growing of the region. If two closely adjacent
structures with similar attributes have inhomogeneous scalar
values (see Fig. 7a), due to the PVE, the region-growing method
usually cannot correctly distinguish such two structures.

To some extent, the proposed method can be regarded as
a compromise between the SG-TF and HD-TFs. While it can
greatly improve the ability of the SG-TF for object classification,
it can also avoid the complexity of HD-TFs. However, because
of the erosion operation and interactive operation used in the
proposed method, much time still might be taken if many
structures are separated. Additionally, when grey between a
structure and closely adjacent components (small fragments or
sub-structures) are slowly and gradually changed, the bound-
ary of the structure sometimes cannot be well visualized.

6.4 User interface, interactions and usability

The user interface used in this paper is simple. It mainly
consists of four parts: the conventional user interface of the
SG-TF space in Fig. 20a, a pop-up context menu in Fig. 20b,
two buttons in Fig. 20c and a default color table in Fig. 20d
with numbers and colors of different connected sets. Fig. 20a
is used for selecting and adjusting the region in the SG-TF
space. Fig. 20b will pop up when right-clicking, and is used
in the separation of different structures from ΦU . Fig. 20c is for
computing connected sets from ΦU and for displaying sepa-
rated structures in ΦU . Fig. 20d is used for visually excluding
several uninteresting surface patches and for merging multiple
connected sets (such as different ribs) by their numbers and
colors.

(b)

(d)

(c)(a)

Fig. 20. The user interface used in this paper. (a) the conventional user
interface of the SG-TF space. (b) a pop-up context menu. (c) two buttons
for computing connected sets from ΦU and for displaying separated
boundaries in ΦU . (d) a default color table.

In volume rendering, it is useful and sometimes necessary,
to incorporate users’ intelligence into the visualization frame-
work. Based on the user interface and the method in this
paper, user interactions for separating structures in ΦU may
become very intuitive and simple. For example, by visualizing
all different large connected sets in ΦU with different colors,
users can easily classify these connected sets into three classes:
Ω1,Ω2,Ω3. By right-clicking a connected set belonging to Ω1,
and selecting the ”Save” item of the pop-up context menu,
the connected set can be automatically separated and saved.
By firstly marking two boundaries S1, S2 in the connected set
Φ ∈ Ω2, and then right-clicking Φ and selecting the ”Automate”
item of the pop-up context menu, S1, S2 can be automatically
separated from Φ and saved. Furthermore, by right-clicking Φ
and selecting the ”Return” item of the pop-up context menu,
users can return to process other connected sets in ΦU . By
right-clicking a connected set Φ ∈ Ω3, and selecting the ”Ω3”
item of the pop-up context menu, a dialogue box containing
the interface for processing Φ will pop up. In this paper, the
processing results at each step can be visualized, observed,
and modified when necessary. Users may select and adjust the
region U in the SG-TF space according to the visualization re-
sults of ΦU . A boundary whose outer boundary voxels are lost
can be observed and repaired by right-clicking the boundary
and selecting the ”Repair” item of the pop-up context menu.
Therefore, the method in this paper can be easily manipulated
by users via the visual feedback mode.

Users can visually recognize different structures from the
visualization of ΦU based on the smoothed or regular shapes of
these structures. Both the user interface and interactive mode
in this paper are intuitive and simple, and easy to operate. This
enables users to easily separate different structures from ΦU ,
even by domain experts.
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7 CONCLUSION

The SG-TF is a popular 2D transfer function used in volume
rendering. However, the boundary-overlapping problem in the
SG-TF space seriously limits its ability for object classification
in many complex 3D images. In this paper we propose a hierar-
chical framework to solve the problem. As a result, the ability
of the SG-TF for object classification can be greatly improved.
A variety of experimental results demonstrate the validation
and effectiveness of our proposed approach for visualizing and
classifying different structures in complex 3D images, while
avoiding the difficulty and complexity of HD-TFs.
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